

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LV8086T — Bi-CMOS LSI Forward/Reverse Motor Driver

Overview

LV8086T is a 2ch forward/reverse motor driver IC using D-MOS FET for output stage. As MOS circuit is used, it supports the PWM input. Its features are that the on resistance $(0.75\Omega \text{ typ})$ and current dissipation are low.

It also provides protection functions such as heat protection circuit and reduced voltage detection and is optimal for the motors that need high-current.

Functions

- 2ch forward/reverse motor driver
- Low power consumption
- Built-in charge pump circuit
- Compact TSSOP24 package
- Possible to respond to 3V control voltage and 6V motor voltage device
- Low ON resistance 1.2Ω
- Built-in low voltage reset and thermal shutdown circuit
- Four mode function forward/reverse, brake, stop.

Specifications

Absolute Maximum Ratings at Ta = 25°C, SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage (For load)	VM1,2 max		-0.5 to 7.5	٧
Supply voltage (For control)	V _{CC} max		-0.5 to 6.0	V
Output current	I _O max1	t ≤ 100ms	1.4	Α
Output peak current	I _O max2	t ≤ 10ms	2.5	А
Input voltage	V _{IN} max		-0.5 to V _{CC} +0.5	V
Allowable power dissipation	Pd	* Mounted on a board	800	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

^{*:} Mounted on a specified board: 30×50×1.6mm, glass epoxy board.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LV8086T

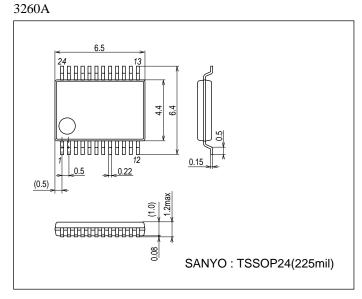
Allowable Operating Ratings at Ta = 25°C, SGND = PGND = 0V

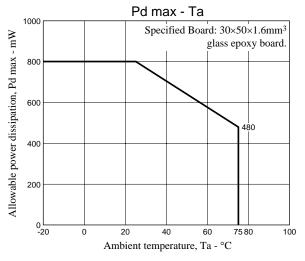
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage (VM Pin)	VM		2.0 to 7.0	V
Supply voltage (V _{CC} Pin)	Vcc		2.7 to 5.5	V
Input signal voltage	V _{IN}		0 to V _{CC}	V
Input signal frequenc	f max		100	kHz
Capacitor for charge pump	C1, C2, C3		0.001 to 0.1	μF

Electrical Characteristics at Ta = 25°C, V_{CC} = VM1 = VM2 = 5.0V, SGND = PGND = 0V, unless especially specified.

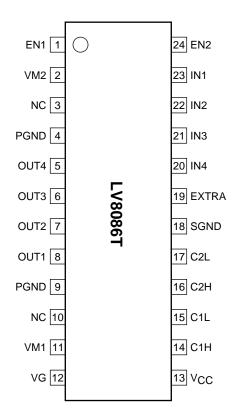
Danamatan	0	Condition -	Ratings			11.7
Parameter	Symbol	Conditions	min	typ	max	Unit
Supply current for load at standby	IMO	EN = 0V			1.0	μА
Supply current for control at standby	ICO	EN = 0V, IN1 = IN2 = IN3 = IN4 = 0V			1.0	μΑ
Current drain during operation	IC1	EN = 5V, VG at no load		0.7	1.2	mA
H-level input voltage	V_{IH}	$2.7V \le V_{CC} \le 5.5V$	0.6V _{CC}		V _{CC}	V
L-level input voltage	V_{IL}	$2.7V \le V_{CC} \le 5.5V$	0		0.2V _{CC}	V
H-level input current (IN1, IN2, IN3, IN4)	lН				1.0	μΑ
L-level input current (IN1, IN2, IN3, IN4)	IJL		-1.0			μΑ
Pull-down resistance (EN1, 2)	RUP		100	200	400	kΩ

$Ta = 25^{\circ}C, V_{CC} = VM = 5.0V, SGND = PGND = 0V$

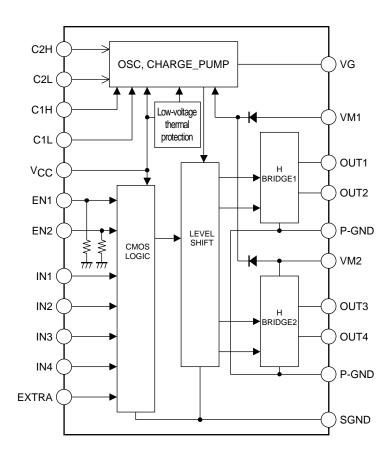

Parameter		Symbol	O and this is a	Ratings			11-4
			Conditions	min	typ	max	Unit
Output ON resistance		RON	Sum of ON resistances at top and bottom		0.75	1.2	Ω
Charge pump voltage		VG		8.5		10.5	V
Low-voltage detection operation voltage		VCS		2.15	2.30	2.45	V
Thermal shutdown operation temperature		Tth			180		°C
Charge pump capacity (IG = 500µA)		VGLOAD		8	9		V
IG current dissipation (Fin = 20kHz)		IG				350	μА
Charge pump start time		TVG	CVG = 0.1μF			1.0	ms
Output block	Turn on time	TPLH			0.2	0.4	μS
	Turn off time	TPHL			0.2	0.4	μS


Remarks

- 1. It shows current dissipation of VM1,2 pin in output OFF state.
- 2. It shows current dissipation of V_{CC} pin in stand-by state. (The standard current depends on EN pin pull-down resistance.)
- 3. It shows current dissipation of V_{CC} pin in state of EN = 5V (stand-by), including current dissipation of V_{CC} pin.
- 4. For IN1, IN2, IN3 and IN4 pins, no pull-down and pull-up resistance is needed. (High impedance pin)
- 5. It shows sum of upper and lower saturation voltages of OUT pin.
- 6. It controls charge-pump oscillation and makes specified voltage.
- 7. When low voltage is detected, the lower output is turned OFF.
- 8. When thermal protection circuit is activated, the lower output is turned OFF. When the heat temperature is fallen, it is turned ON again.
- 9. IG (VG pin load current) = 500μ A
- 10. It shows VG pin current dissipation in state of PWM input for IN pin.
- 11. It specifies start-up time from 10% to 90% when VG is in non-load state (when setting the capacitor between VG and GND to $0.1\mu F$ and V_{CC} is 5V).
- 12. It specifies 10% to 90% for start-up and 90% to 10% for shut-down.


Package Dimensions

unit: mm (typ)



Pin Assignment

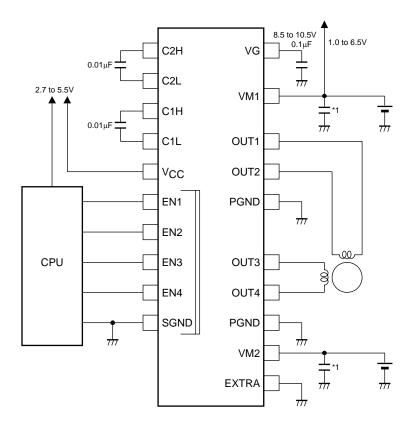
Block Diagram

Truth table

EXTRA	EN1 (EN2)	IN1 (IN3)	IN2 (IN4)	OUT1 (OUT3)	OUT2 (OUT4)	Circuit of Charge Pump	Mode
	L	Н	Н	L	L		Brake
		Н	L	Н	L	011	Forward
L		L	Н	L	Н	OFF	Reverse
		L	L	Z	Z		Standby
	L	-	-	L	L		Standby
	н	Н	-	Н	L		Forward
н		L	-	L	Н	ON	Reverse
	L	-	-	L	L		Brake

-: Don't care Z: High-Impedance

^{*} Current drain becomes zero in the standby mode.


 $^{^{\}star}$ The output side becomes OFF, with motor drive stopped, during voltage reduction and thermal protection.

LV8086T

Pin Functions

Pin Fun	ctions		
Pin No.	Pin name	Function	Equivalent Circuit
15	C1L	Voltage raising capacitor connection pin	Voc
17	C2L		Vcc — —
14 16	C1H C2H	Voltage raising capacitor connection pin	C1H VG
23	IN1	Driver output changeover	Vcc— ↓
22	IN2		100
21	IN3		*
20	IN4		
19	EXTRA		*
1	EN1	Logic enable pin	V _{CC} — • —
24	EN2	TOUT output control pin	
		(Pull-down resistor incorporated)	₩ \$200kΩ
8	OUT1	Driver output pin	VM
7	OUT2		
6	OUT3		
5	OUT4 PGND		OUT OUT PGND
2 11	VM2 VM1	Motor power supply	
13	VCC	Logic power supply	
12	VG	Driver drive circuit power supply	VG
			C2H 0.01µF 0.01µF C2L
18	SGND	Logic GND	
9	PGND	Driver GND	
4	PGND	(both terminals to be connected)	

Sample Application Circuit

- *1: Connect a kickback absorption capacitor directly near IC. Coil kickback may cause rise of the voltage of VM line, and the voltage exceeding the maximum rating may be applied momentarily, resulting in deterioration or damage of IC.
 - SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
 - Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
 - SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
 - In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
 - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
 - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
 - Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July, 2012. Specifications and information herein are subject to change without notice.